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Introduction

Context and importance

Weather and climate change play a crucial role in society.

Extreme weather events, predominantly caused by climate
change, affect all everyday activities.

Weather forecasting is essential for preventing large-scale
disasters.

Identification and prediction of severe weather phenomena is
difficult.
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Introduction (2)

Clouds classification

There are various classifications for the clouds.

The standard set is considered to be the WMO’s [WMO]:

High clouds: Cirrus (Ci), Cirrocumulus (Cc), Cirrostratus
(Cs);
Middle clouds: Altocumulus (Ac), Altostratus (As),
Nimbostratus (Ns);
Low clouds: Stratocumulus (Sc), Stratus (St), Cumulus
(Cu), Cumulonimbus (Cb).
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Introduction (3)

Figure: Cumulus clouds [WMO]
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Motivation

Clouds display many characteristics (e.g., colour, shape)
which are not easily quantifiable.

Cloud identification represents one of the main activities of
the weather stations personnel.

Much data collected by satellites and instruments can be
processed automatically.

A relatively new topic in AI with much potential. Machine
Learning proves to be a promising domain.
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Motivation (2)

Figure: A tropical cyclone [WMO]

Ştefan Alexandrescu Clouds classification



Introduction
Motivation

Related work
Research contribution

Discussion
Conclusions and future work

Related work

Details

There is a progression from traditional image processing
techniques toward more complex neural models.

The approaches vary:

supervised
unsupervised
self-supervised

Public datasets involved: Cirrus Cumulus Stratus Nimbus
(CCSN) [Liu19], Ground-based Cloud Dataset (GCD)
[LDZ+22], SWIMCAT, MODIS, LSCIDMR.
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Related work (2)

Zhang et al. [ZLZS18] introduced CloudNet, a CNN
inspired by AlexNet, trained on the CCSN dataset with 11
cloud classes. Achieved 88% accuracy (CCSN) and 98.6%
(SWIMCAT).

Mihuleţ et al. [MC25] proposed X-Cloud and M-Cloud,
lightweight CNNs based on Xception, trained on CCSN and
GCD datasets. Achieved 75% average accuracy with high
efficiency.

Luo et al. [LPS+24] developed a YOLOv8-based pipeline
with haze-reduction preprocessing and image segmentation.
Trained on 4000-image Tibet dataset, achieving near-perfect
training accuracy.
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Related work (3)

Yousaf et al. [YRK+23] used over 100k satellite images
(LSCIDMR), proposing a CNN-ResNet model inspired by
VGGNet. Achieved 97.25% accuracy using GAP and softmax
classification.

Togaçar et al. [TE22a] implemented a mobile-friendly
ShuffleNet with super-resolution, semantic segmentation, and
SFO feature selection. Best accuracy: 98.56% using LDA.

Dev et al. [DLW15] proposed a texton-based model using
S-filters and k-means clustering, tested on SWIMCAT.
Achieved near-perfect classification, struggling slightly with
veil clouds.
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Related work (4)

Vasylieva et al. [VM22] trained a CNN on NOAA-20
satellite imagery for 4-class cloud classification. Achieved 95%
training and 85% validation accuracy.

Geiss et al. [GCV+24] proposed a self-supervised SNN with
Barlow Twins loss. Trained on MODIS and ABI datasets,
outperforming supervised models with accuracy surpassing
80%.

Kurihana et al. [KKF+19] used a deep CAE with advanced
loss metrics and HAC clustering on MODIS data. Showed
good unsupervised class separation and high AMI stability
scores.
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GCD dataset peek

Figure: Sample images extracted from CCSN dataset [TE22b]
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Proposal

Proposed ideas reside at the intersection of generative models
and transformer-based architectures.

Enhancing the performance of cloud classification from images
using a Diffusion (Classifier) and a Vision Transformer
(ViT), both of which provide notable benefits:

contextual reasoning using mechanisms such as attention;
generative capabilities that enhance generalization and analyse
small details.
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Diffusion classifier (1)

Learn a bijection between original domain and pure noise
space.

Consists of two steps: forward and reverse diffusion
processes for altering an image.

the formulation of the forward process function:

q(xt |xt−1) = N(xt ,
√

1− βtxt−1, βt I ) (1)

- xt-1 and xt are the input and output at step t
- N is the normal distribution
- βt is the noise degree scheduler.
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Diffusion classifier (2)

Figure: An overview of the diffusion classifier model [LPD+23]
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Vision Transformer (1)

Complex type of Deep Neural Networks (DNN) that rely on
the mechanism of attention.

Adjusted for image processing, as opposed to regular
transformers.

Techniques involved:

Patch Embeddings
Positional Embedding
Multi-Head Self-Attention
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Vision Transformer (2)

Figure: Architecture of the ViT model [DBK+21]
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Case study on real data

Further testing is currently in progress, we evaluate multiple
models (simple ViT model, hybrid ViT+efficient CNN feature
extractor pre-trained on Image-Net).

At this state, accuracy reached considerable values for some
datasets (over 99% on Swimcat-extend, as well as all the
other measured metrics.

This shows the model’s well performance and robustness.
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Case study results

Figure: Classification performance of the ViT model on Swimcat-extend
(5-Fold CV)
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Case study results

Figure: CV Confussion matrices on Swimcat-extend (5-Fold CV)
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Discussion

CNN-based models (e.g., CloudNet [ZLZS18],
ResNet-VGG [YRK+23]) achieve high accuracy (∼98.6%) on
balanced datasets using strong augmentation.

Lightweight architectures (e.g., X-Cloud, M-Cloud [MC25])
prioritize efficiency, trading off accuracy (∼75%) for
deployment flexibility.

Preprocessing-heavy pipelines [LPS+24] improve image quality
(e.g., haze correction), but often suffer from limited
generalizability due to geographic bias.

Our ViT model achieved 99% accuracy, validating the value of
attention-based mechanisms in capturing complex cloud
patterns, while also indicating strong potential for scaling.
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Discussion (2)

Approach Dataset(s) Classes Accuracy (%)
CloudNet CCSN, SWIMCAT 11 88.0 / 98.6
ResNet-VGG LSCIDMR 11 97.25
X-Cloud / M-Cloud CCSN, GCD 11, 7 75.0
YOLOv8 + Segmentation Custom (Tibet) 4 ∼100 (train), low on Cu
ShuffleNet + SFO CCSN, SWIMCAT-Ext 11, 6 98.56
CNN NOAA-20 VIIRS 4 95 (train), 85 (val)
Texton + S-Filters SWIMCAT 5 ∼ 100
SNN MODIS, ABI Self-supervised >80
CAE + HAC MODIS Unsupervised N/A
ViT (Ours) Swimcat 6 99.0

Table: Summary of cloud classification models, datasets used, number of
classes, and reported accuracies.
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Conclusion

Deep learning has transformed cloud classification, with CNNs
and ViTs excelling in capturing visual patterns and contextual
dependencies.

This ViT and Diffusion design addresses key challenges such
as class imbalance, image noise, and the difficulty of labelling
large datasets.

These innovations contribute toward automating weather
phenomenon analysis, an increasingly vital task in
climate-aware societies.
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Future Work

Implement a Diffusion Classifier with similar goals.

Integrate ViT and Diffusion models into hybrid systems,
leveraging both contextual understanding and generative
capabilities.

Investigate multimodal fusion of satellite, radar, and
ground-based imagery for richer data representations.

Utilize generative learning for other tasks such as weather
event simulation and prediction.
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Ştefan Alexandrescu Clouds classification

https://wmo.int/


Introduction
Motivation

Related work
Research contribution

Discussion
Conclusions and future work

References VII

Jinglin Zhang, Pu Liu, Feng Zhang, and Qianqian Song,
CloudNet: Ground-Based Cloud Classification With Deep
Convolutional Neural Network, Geophysical Research Letters
45 (2018), no. 16, 8665–8672.
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